
DERI Galway
IDA Business Park

Lower Dangan
Galway, Ireland

http://www.deri.ie/

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

On Integration Issues of

Site-Specific APIs into the

Web of Data

Tim Berners-Lee Richard Cyganiak
Michael Hausenblas Joe Presbrey

Oshani Seneviratne Oana-Elena Ureche

DERI Technical Report 2009-08-14

August 2009

DERI – DIGITAL ENTERPRISE RESEARCH INSTITUTE

DERI Technical Report

DERI Technical Report 2009-08-14, August 2009

On Integration Issues of Site-Specific APIs into the
Web of Data

Tim Berners-Lee1 Richard Cyganiak2 Michael Hausenblas2

Joe Presbrey1 Oshani Seneviratne1 Oana-Elena Ureche2

Abstract. The current Web of Data, including linked datasets, RDFa content, and
GRDDL-enabled microformats is a read-only Web. Although this read-only Web of Data
enables data integration, faceted browsing and structured queries over large datasets, we
lack a general concept for a read-write Web of Data. That is, we need to understand how
to create, update and delete RDF data. Starting from the experience we have gathered
with Tabulator Redux—a single-triple update system based on a data Wiki—we review
necessary components to realize a read-write Web of Data. We propose a form-based
editing approach for RDF graphs along with the integration of site-specific APIs. Further,
we present a concept of a uniform architecture for a read-write Web of Data, including
a demonstration. Eventually, our work reveals issues and challenges of the proposed
architecture and discusses future steps.

Keywords: Web of Data, read-write Web, update RDF data, site-specific APIs

DISCLAIMER We note that this is work in progress and should be cited as such.
This is an intermediate report to capture the current state of our work (mid 2009).
For further information and ongoing activities, the interested reader is invited to visit
http: // esw. w3. org/ topic/ WriteWebOfData .

1MIT CSAIL, Cambridge, Massachusetts, USA. (timbl | presbrey | oshani)@csail.mit.edu
2DERI, National University of Ireland, Galway, Ireland. firstname.lastname@deri.org

Acknowledgements: This work has been carried out in the Linked Data Research Centre (LiDRC).

Copyright c© 2009 by the authors

DERI TR 2009-08-14 I

Contents

1 Introduction 1

2 Use Cases and Requirements 3
2.1 UC1: Calendars . 3
2.2 UC2: Blogging . 3
2.3 UC3: Software Development . 3
2.4 UC4: Photo Annotation . 3
2.5 Requirements . 4

3 Concept of a Read-Write Web of Data 5

4 Core Components 7
4.1 Update Protocols . 7

4.1.1 Existing Solutions . 7
4.1.2 Web of Data . 7

4.2 Authentication . 8
4.2.1 Existing Solutions . 8
4.2.2 Web of Data . 8

4.3 Authorization . 9
4.3.1 Existing Solutions . 9
4.3.2 Web of Data . 9

5 A Form-Based RDF Graph Editing Approach 10
5.1 Data Model Correspondency . 10
5.2 HTML form + RDFa = RDForms . 11
5.3 Wrapper . 14

6 Demonstrator 15

7 Conclusion & Outlook 17

DERI TR 2009-08-14 1

1 Introduction

With the recent uptake of the linked data movement, we are witnessing the publication of huge
amounts of valuable structured data on the Web. Further, major search engines (Google and Ya-
hoo!) started to support indexing structured data such as RDFa and microformats. Hence, the
incentive to publish these formats has increased dramatically. The current Web of Data allows, for
example, data integration, faceted browsing and structured queries over large datasets. Addition-
ally, it drives the development of applications on top of structured and interlinked data [Hau09].
Very likely, these applications will sooner or later not only want to consume data, but also perform
changes to the state of the resources they are operating on.

The Web of Documents featured editable pages since the very beginning on, which happened
to be continued in Wiki environments. The current Web of Data is essentially a read-only Web.
When we talk about the Web of Data, we mean structured and possibly interlinked data in RDF,
such as hinted in Fig. 1. We mainly focus on the linked data part of the Web of Data in this
paper. Linked data [BL] has changed the way RDF is deployed nowadays. Linked data is RDF
technology that uses HTTP URIs to denote things, and provides useful information about a thing
at the thing’s URI. Additionally, links to other RDF datasets are included, allowing machines to
traverse the Web of Data similar to what humans can do in the Web of Documents. The starting

Figure 1: The Web of Data—structured and interlinked data in RDF.

point of this work is the experience we have gathered with Tabulator Redux [BLHL+08], which
extends the linked data browser Tabulator with a single-triple update system based on a data
Wiki. Our contribution on the one hand is a form-based editing approach for RDF graphs called
RDForms, along with the integration of legacy systems such as site-specific APIs, realized through
write-wrappers (pushbacks), somehow comparable to the linked data read-wrappers. On the other
hand, we present our concept of a uniform architecture for a read-write Web of Data, including a
demonstration.

2 DERI TR 2009-08-14

A read-write Web of Data has potentially many application areas. Reviewing the current
areas of Web update applications suggests that one has to deal with manifold dimensions such
as structured vs. unstructured content, granularity, etc.—in Fig. 2 an overview on Web update
applications is shown. The x-axis represents the degree of freedom regarding the content structure

Figure 2: Web update applications.

and the transparency of the editing process is shown on the y-axis. With transparency of the editing
process we mean how present the editing is to the human user. Whereas in case of an update process
of a page on Wikipedia, one has apparently the impression of editing the actual page, however,
when one orders a book at Amazon, the update (of Amazon’s database) is much more hidden and
of indirect nature. Note that the size of the bubbles in Fig. 2 denote the volume of a typical update
operation, ranging from a single RDF triple in case of Tabulator to couple of sections in a Google
Doc. Eventually, there are many more update application scenarios on the Web, not depicted in
Fig. 2.

We will now present use cases and state requirements for a read-write Web of Data (Section 2).
Then, Section 3 introduces the overall concept of a read-write Web of Data and shows how the
components play together. In Section 4 we review necessary core components and in Section 5 we
present our proposal for a form-based approach for editing RDF graphs, including the integration of
legacy systems. We describe a demonstration of the proposed read-write Web concept in Section 6
and outline the next steps in Section 7.

DERI TR 2009-08-14 3

2 Use Cases and Requirements

The use cases described below have in common that they happen in the semantic space. By
semantic space we mean that an agent (human or machine alike) consumes some linked data in
RDF. A human agent would typically navigate through linked datasets using Tabulator1 or the
OpenLink Data Explorer2, while a machine agent (a crawler, aggregator, etc.) would use some
HTTP library such as Ruby’s net/http.rb3. While operating in the semantic space, at some point
in time the agent might want to perform an action on it, such as adding a bookmark or updating
a calendar.

2.1 UC1: Calendars

Finding a common time slot is often hard. Given two calendars and a certain event, how can a
time slot be found and updated in the respective calendars of the individual participants?

2.2 UC2: Blogging

Microblogging services such as Twitter, identi.ca, etc. allow people to broadcast and exchange
short messages on the Web. Lara, browsing a SIOCified blog post4, wants to post a twit from
there. The other day Lara wants to bookmark, for example, a URI in a microblogging post from
Twitter in delicious. Can she do these things without leaving her environment (blog, etc.)?

2.3 UC3: Software Development

Bob, a software project manager has three developers available for a project, as well as an issue
tracker. Based on an urgent feature request Bob wants to change the assignments of bugs to certain
developers, based on their availability. Thanks to D2R server5 the issue tracker data is available
in RDF, same is the calendar data. Bob figures out who of his developers is available when by
merging the three developer’s calendars. Then, he needs to go back to the issue tracker and change
the assignments and additionally may need to confirm or block certain time slots in the calendars.
Why can’t he do this in-place, where he has all the merged RDF data already available?

2.4 UC4: Photo Annotation

Sarah consumes an RDF graph where data from the flickr wrapper and Geonames is mashed up.
She wants to update the geo-location of a flickr photo (e.g., because it is inaccurate) with the data
from Geonames. She needs to log into flickr, copy and paste the data from Geonames and update
the annotation there, though she has all the data needed for the task already in the initial RDF
graph.

1http://www.w3.org/2005/ajar/tab
2http://linkeddata.uriburner.com/ode/
3http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/
4http://esw.w3.org/topic/SIOC/EnabledSites
5http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

4 DERI TR 2009-08-14

2.5 Requirements

Based on the use cases outlined above and taking into account our experience with earlier systems,
we require that a read-write Web of Data must:

• Be based on the Web of Data core standards: Uniform Resource Identifiers (URIs) [BLFM05]
for identifying things of interest, the Hypertext Transfer Protocol (HTTP/1.1) [FGM+99]
for accessing things and description of things, and the Resource Description Framework
(RDF) [KCM04] as a data model to relate and describe things;

• Provide for a uniform interface, that is, treat RDF and non-RDF back-ends, such as site-
specific APIS, the same way;

• Scale to the size of the Web;

• Support the social constraints and expectations human users have regarding the update of
the underlying data in terms of integrity, trust, provenance, etc.

Additionally, the solution should be representation agnostic, meaning whatever RDF serialisation is
supplied (RDF/XML, Turtle, RDFa, microformats+GRDDL), the system should be able to handle
it. Eventually, the solution should be usable in currently deployed Web environments, such as
xAMP, JavaScript.

DERI TR 2009-08-14 5

3 Concept of a Read-Write Web of Data

We propose a three-tiered architecture: an agent (top) has a Web ID associated with it, same as
resources have access control information attached (bottom). The read path to the right is realized
through linked data, the write path to the left relies on SPARQL Update. Wherever necessary,
wrapper allow non-RDF sources to participate, offering the same interface as native RDF systems.

Figure 3: Concept of a read-write Web of Data.

Fig. 3 depicts the read-write Web of Data concept comprising the following components:

• A read protocol and a write protocol (Section 4.1);

• An agent identifier and an authentication scheme and protocol (Section 4.2);

• An authorization scheme and protocol (Section 4.3);

• For the integration of non-RDF sources, read/write-wrapper (Section 5).

The read/write process (Fig. 4) is as follows: an agent, authenticates against a service with and
the authorization is checked. If the desired operation on the resource is allowed for the agent, it is
executed, potentially engaging wrapper for legacy data sources.

6 DERI TR 2009-08-14

Figure 4: Sequence diagram for read and write operations in the Web of Data.

DERI TR 2009-08-14 7

4 Core Components

In order to realize a read-write Web of Data, we require an update protocol for writing linked
data resources, authentication and authorization mechanisms to secure linked data access and
management, and implementations supporting these protocols and mechanisms for servers and
clients. Additionally, wrappers for integrating legacy data as RDF are necessary for maintaining
compatibility with the Web at large. In the following, we discuss these components and highlight
their interdependencies.

4.1 Update Protocols

4.1.1 Existing Solutions

The HTTP protocol [FGM+99] specifies general methods for querying or managing a single doc-
ument or resource by URI, e.g., HEAD, GET, POST, PUT, DELETE, OPTIONS. The Web Dis-
tributed Authoring and Versioning protocol (WebDAV) [Dus07] extends HTTP with additional
methods for collaborative authoring of documents and management of document collections, for
example COPY, MOVE, LOCK. WebDAV support is included in the freely distributed Apache
web server and several widely-deployed client interfaces including OS X and Microsoft desktop and
office products.

However, HTTP with WebDAV is not optimal for editing linked data due to the coarse gran-
ularity of HTTP request URIs. For example, to update to a single value in some document using
WebDAV, the full document source must be serialized and retransmitted using PUT during every
commit since the request URI may not reference individual data within the document (commonly
a URI fragment). Further, a client that uses the LOCK method on a resource before editing (for
collision avoidance) prevents updates by other clients to all data in the entire document. Thus,
WebDAV editing latency increases with document size and collaborating authors.

4.1.2 Web of Data

In [BLHL+08] we have described Tabulator Redux, one of the first read-write Web of Data imple-
mentations. We extended Tabulator to write back changes on a per-triple base in a Wiki environ-
ment. About the same time, the authors of [DHP08] described a method based on an extension
of another Wiki, using RDFa to establish in-place edits. In early 2009, a RESTful method to
contribute triples to an RDF file has been proposed [Ink09], and only recently Gray et. al. [GLA09]
presented a RESTful read-write Web of Data service, giving application authors access to simple
persistence, simple (social) sharing, and lightweight semantics, based on the Changesets specifica-
tion6.

One influential activity can be detected around SPARQL. The respective W3C Working Group
has recently been chartered7 to standardise the dialects—Jena’s SPARUL, ARC2’s SPARQL+,
etc.—to define a uniform SPARQL Update interface. In the following, we will refer to the currently
different implementations as SPARQL Update. Currently, only few secure SPARQL endpoint im-
plementations are known. One example is OpenLink’s Data Space8.

6http://n2.talis.com/wiki/Changesets
7http://www.w3.org/2009/01/sparql-charter
8http://www.openlinksw.com/OdbcRails/main/ODS/VirtODSFOAFSSL

8 DERI TR 2009-08-14

4.2 Authentication

The first step in the process of allowing a read/write operation is called authentication. In the
context of REST [FT02], authentication of a client is performed by a server to determine the
identity of the requesting agent. In order to perform authentication, one needs to know about the
identity of an agent. In the context of the Web of Data we speak of a Web ID9, a URI which
identifies an agent and typically exposes a description of that agent when dereferenced. Using the
Web ID as the principal identifier for the user avoids the per-domain boundaries of the username/ID
token of most centralized authentication models.

4.2.1 Existing Solutions

In [FHBH+99] the HTTP Authentication is defined. It includes the specification for the Basic
Authentication scheme which transmits a clear-text username and password and is considered
insecure unless used with an encryption scheme such as HTTPS as provided by SSL. OpenID
Authenticaion10 provides a way to prove that an agent owns a Web ID without passing around the
agent’s credentials. It is a completely decentralized system in the sense that anyone can choose to be
a consumer or identity provider without having to be approved by a central authority. However, its
non-standard consumer authorization implementation requires clients to handle provider-specific
HTML confirmation pages. This constraint requires all clients of OpenID services to facilitate
HTML rendering for the user. For example, WebDAV services deploying OpenID authentication
would additionally require modification of WebDAV client software and user upgrades. Another
authentication mechanism widely used are API keys, where one registers for a key which is then
used in the read/write operation.

4.2.2 Web of Data

As described in [SHJJ09], FOAF+SSL is an authentication protocol that links a Web ID to a public
encryption key using X.509 Public Key Infrastructure [HFPS99] to provide a global, decentralized
and open yet secure social network by building a “Web of Trust” using FOAF profile data. The
user claims a Web ID by self-issuing a client SSL certificate including the Web ID URI in the “Sub-
ject Alternative Name” component of the certificate and publishing the cryptographic properties of
the certificate in their FOAF file. Normal SSL client-server negotiations occur providing message
privacy but a trusted Certificate Authority is not required to validate SSL identity and thus decen-
tralizing authentication. Instead, the server dereferences the Web ID and validates the certificate
data with that published in the linked data to provide message authenticity. All clients supporting
client SSL certificates inherit support for FOAF+SSL. This includes many widely-deployed browsers
such as Mozilla Firefox, Microsoft Internet Explorer, Apple Safari (and even iPhone) and others.
We have provided server support for the Apache web server by extending its existing support for
SSL with the mod authn webid11 module. As discussed in [Pre09], the Apache implementation is
modular, high-performance, and scalable. Two high-level language implementations of FOAF+SSL
authentication exist (Perl12 and PHP13) that can be integrated into servers, already.

9http://esw.w3.org/topic/WebID
10http://openid.net/specs/openid-authentication-1_1.html
11http://dig.csail.mit.edu/2009/mod_authn_webid/
12http://search.cpan.org/~tobyink/CGI-Auth-FOAF_SSL/
13https://foaf.me/testLibAuthentication.php

DERI TR 2009-08-14 9

4.3 Authorization

After authenticating an agent’s identity, a mechanism called authorization determines whether the
identity may perform the requested operation.

4.3.1 Existing Solutions

In [TAPH05] existing access control models as applied to collaboration are examined. In a simi-
lar vain in [Zha08] three access control models for collaborative environment are introduced and
compared using several evaluating criteria.

4.3.2 Web of Data

Giunchiglia et. al. [GZC09] have recently presented an ontology-driven community access control
mechanism. We have recently introduced the WebAccessControl (WAC)14, a decentralized system
for allowing different users and groups various forms of access to resources, where users and groups
are identified by HTTP URIs. WAC is similar to the access control system used within many file
systems, except that the protected documents, as well as the users and the groups are identified by
URIs.

Figure 5: The WAC vocabulary.

Fig. 5 shows the WAC vocabulary15, providing the terms necessary for access control lists to
be used on the Web. Note the following prefix assignments:

acl: <http://www.w3.org/ns/auth/acl#>

gen: <http://www.w3.org/2006/gen/ont#>

14http://esw.w3.org/topic/WebAccessControl
15http://www.w3.org/ns/auth/acl

10 DERI TR 2009-08-14

We have provided the mod authz webid16 Apache module to demonstrate secure, collaborative
authoring of linked data on a WebDAV-enabled filesystem [Pre09] authorized using WAC. Further, a
PHP implementation17 for WAC is available, as well as an experimental WAC explorer for embedded
WAC policies18.

5 A Form-Based RDF Graph Editing Approach

As already noted in [BLHL+08], there are challenges regarding the editing of RDF graphs with
regards to the Web of Documents. In order to better understand the underlying issues, we will first
have a deeper look into common data models, how they correspond and how the human user on
the client side may be supported or hindered by the interface and interactions offered.

5.1 Data Model Correspondency

Motivated by the Relational Databases on the Semantic Web design note19 we can identify corre-
spondences between a relational database table, the RDF data model, graph patterns (in the sense
of SPARQL20) and forms, as shown in Table 1.

Relational DB Table RDF data model Graph pattern Form
a table type of the resource s in

subject position
:s rdf:type ?type N.A.

a record in the table all triples where re-
source s is in subject po-
sition

:s ?p ?o a form

a column in the table a property p ?s :p ?o a field’s key
a cell in the table the value of object o of

a certain property p of s
:s :p ?o a field’s value

Table 1: Correspondency between relational data, RDF, and forms.

The Fig. 6 introduces the concept of an information unit, a set of related data items in a
certain context. Referring to Table 1, in case of a relational data base table, the information unit
is the record, in an RDF graph the information unit can be understood to be all triples where a
certain resource s is in subject position, and in case of a form, it is the entire form itself. Though
forms are often perceived as sheer UI or interaction vehicles, one can assign explicit semantics to
its components (fields). From Fig. 6 we further learn that there are potentially data items, such
as a start date of an event, etc. that are required (marked with an “R”). The entire information
unit does not make sense if this data item is not provided or removed. This forms an integrity
constraint, which one must address when updating information units.

16http://dig.csail.mit.edu/2009/mod_authz_webid/
17http://lists.foaf-project.org/pipermail/foaf-protocols/2009-May/000599.html
18http://ld2sd.deri.org/wacup/
19http://www.w3.org/DesignIssues/RDB-RDF.html
20http://www.w3.org/TR/rdf-sparql-query/#defn_TriplePattern

DERI TR 2009-08-14 11

Figure 6: An information unit across different models.

Another characteristic of data items is, that they can be structured (such as dates, ZIP codes,
etc.) or unstructured (free-text) regarding their content. The Table 2 illustrates these data item
characteristics by example of an information unit from the iCalendar schema [DS98].

structured unstructured
required cal:dtstart cal:summary
optional cal:Valarm cal:description

Table 2: Data item characteristics examples for an iCalendar information unit.

Eventually, from an interaction perspective, we understand that information units should be
first-class objects: Tullis [Tul97] states that:

... user should be able to assume that the elements within a group relate to each other
semantically.

We hence advocate a form-based editing approach for RDF graphs, which we will elaborate on
in greater detail in the next section.

5.2 HTML form + RDFa = RDForms

There are some earlier partial attempts known that proposed a form-based editing of RDF data21

or mapping22, alike. However, to the best of our knowledge, no fully specified and implemented
proposal for form-based editing of RDF graphs exists.

21http://www.markbaker.ca/2003/05/RDF-Forms/
22http://www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.html

12 DERI TR 2009-08-14

In order to allow form-based editing of RDF graphs we introduce RDForms, somehow com-
parable to the mapping of field semantics in [DKP+07]. An RDForm is a way for a User Agent
to solicit and communicate structured updates to a SPARQL endpoint. An RDForms consists
of (i) an HTML form, annotated with the RDForms vocabulary23 in RDFa [ABMP08], and (ii)
an RDForms processor, gleaning the triples from the form in order to create a SPARQL Update
statement, which is then sent to a SPARQL endpoint. Additionally, the RDForm can be used on
the client-side to check integrity constraints or automatically fill-in values.

Figure 7: The RDForms vocabulary.

The RDForms vocabulary (Fig. 7) defines the semantics of a key-value pair set of fields in an
HTML form. The main reason for introducing a dedicated vocabulary to capture the values is that
this allows us to write a generic RDForms processor. However, this requires knowledge about how
to map the original vocabulary terms (such as FOAF, SIOC, etc.) to the terms of the RDForm
vocabulary. Further, the RDForms vocabulary defines Create-Update-Delete (CUD)24 operations,
where a CUD operation is a declaration of an intended operation on an RDForm.

23http://rdfs.org/ns/rdforms
24http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

DERI TR 2009-08-14 13

In a first step, we have implemented a client-side, JavaScript based RDForms processor using
rdfquery25. The code for the RDForms processor as well as source code examples are available
online26. One concrete example of an RDForm is depicted in Fig. 8 (as well as parts of the
HTML+RDFa source code in Listing 1). This is an RDForm for manipulating data in the Jira
issue tracker27; it defines an update operation (that is, changing existing values of the information
unit Issue), and, more specifically Listing 1 shows the RDFa markup of a certain field, such as its
key and value definition, as well as its characteristic (required).

Figure 8: Screen-shot of an RDForm for the Jira issue tracker.

Concerning other exemplary RDForms (such as for Twitter), the reader is referred to the online
demo page28 and a screen-cast demonstrating the Jira RDForm29.

RDForms can be dynamically generated from an RDF graph along with an existing (X)HTML
form for the data present in the graph. The process of generating an RDForm on-the-fly is called
“fusion”. The RDForms generator, a service that implements a client-side (JavaScript-based)
fusion, is available online30.

25http://code.google.com/p/rdfquery/
26http://code.google.com/p/pushback/
27http://www.atlassian.com/software/jira/
28http://ld2sd.deri.org/pushback/
29http://vimeo.com/3663028
30http://ld2sd.deri.org/pushback/fusion/

14 DERI TR 2009-08-14

1 <form id="fo1" action="" about="#bugform" typeof="pb:RDForm">

2 <div rel="pb:operation">

3 <div about="#update -op" typeof="pb:CRUDOperationUPDATE" />

4 <fieldset >

5 <legend >Issue </legend >

6 <div rel="pb:field">

7 <div about="#summary" typeof="pb:UpdateableField pb:RequiredField">

8 <label for="summary.val" rel="pb:key" resource="#summary.key"

property="dcterms:title">Summary </label >:

9 <div rel="pb:value">

10 <div about="#summary.val" typeof="pb:FieldValue">

11 <input id="summary.val" type="text"

12 property="rdf:value" content="" value="" size="40" />

13 </div >

14 </div >

15 </div >

16 </div >

17 </fieldset >

18 </form >

Listing 1: Jira RDForm source code.

5.3 Wrapper

Most of the data on the Web to-date is based on formats such as XML, JSON, etc.31, though linked
data is acting as the backbone on the Web of Data, providing a common data model through RDF
and a universal data space through the usage of URIs and HTTP. In order to enable non-RDF data
sources (such as Atom feeds or Web services, etc.) to participate in the RDF-based Web of Data,
we need to wrap them.

In the read-only case of a wrapper, we refer to the linked data publishing process32. Many
read-wrapper are already available (URIBurner33, etc.). In fact, linked data can be understood
as a read-only RESTful architecture [RR07]. Equally, the majority of write-interfaces resides in
site-specific API environments; examples of so called site-specific APIs range from bookmarks34

to the wide range of Google products35. A leading API directory lists more than 1300 APIs at
time of writing36. A question arises now: until the wide availability of RDF-based back-ends
(such as SPARQL endpoints), how can the majority of the site-specific APIs be accessed and
hence integrated in the Web of Data? We propose RDF write-wrapper, which conceptually accept
SPARQL Update as input and map to calls of site-specific API functions. We will give an example
of an implementation in the next section.

31http://webofdata.wordpress.com/2009/07/20/what-else/#comment-132
32http://linkeddata.org/docs/how-to-publish
33http://linkeddata.uriburner.com/
34http://delicious.com/help/api
35http://code.google.com/apis/
36http://www.programmableweb.com/apis

DERI TR 2009-08-14 15

6 Demonstrator

To demonstrate our concept of a read-write Web of Data, we have implemented a use case where
calendar data is updated using the Google calendar API (Fig. 9).

Figure 9: The Google calendar read-write Web of Data demo.

Tabulator can readily discover calendar data from RDF data sources such as FOAF files. Cal-
endar data from non-RDF sources such as Google iCal files can be converted to RDF using simple
tools37 to enable Tabulator to browse the calendar data. Once such calendar data are available,
the “Pushback Pane” on Tabulator (Fig. 10) can be used to modify the event data. The “Pushback
Pane” implements an RDForm, which sends a SPARQL Update of the corresponding change to the
pushback. The “Pushback Pane” is implemented in a modular manner, so that other API specific
updates could be implemented easily.

On the server-side we have implemented a pushback that wraps the Google Calendar API.
We have set up an ARC238 RDF triple store, which acts as a SPARQL endpoint towards the
RDForm, caching the RDF triples sent from the RDForm. A server module polls the RDF store
to detect changes and maps the RDForm fields to function calls of the Google calendar API.
Note that the demonstrator is available at the Tabulator development version control system at
https://svn.csail.mit.edu/dig/2007/tab/ (username and password for the public account are
“dig”).

37By using tools such as ics2rdf, http://torrez.us/ics2rdf/.
38http://arc.semsol.org/

16 DERI TR 2009-08-14

Figure 10: Left: Outline view in Tabulator displaying the calendar information. Right: “Pushback
pane” to modify the calendar information and send updates to the pushback.

HTML form/POST Tabulator single-triple Tabulator RDForms
Architectural Properties

1.1 AWWW yes yes yes
1.2 RESTful yes no no
1.3 Semantics no yes yes

Complexity
2.1 Client low middle middle
2.2 Server low middle high

Characteristics
3.1 Agnostic no no yes
3.2 Information
Unit

yes no yes

Table 3: Comparison of the different update interfaces.

Table 3 is a comparison of the RDForm-based approach with a conventional HTML Form using
HTTP POST and the original Tabulator Redux (single-triple edit), using following keys:

1. Architectural Properties

(a) AWWW ... compliant to the Architecture of the World Wide Web [JW04]
(b) RESTful ... compliant to the REST architectural style as of [FT02]
(c) Semantics ... compliant to SPARQL Update semantics

2. Complexity

(a) Client ... effort to develop client side of the implementation
(b) Server ... effort to develop server side of the implementation

3. Characteristics

(a) Agnostic ... data source agnostic (same interface for RDF and non-RDF back-ends)
(b) Information Unit ... supports information units

DERI TR 2009-08-14 17

7 Conclusion & Outlook

We have argued in this paper that we lack a general concept for a read-write Web of Data and
motivated the need to understand how to create, update and delete RDF data in a secure, reliable,
trustworthy and scalable way. Combining existing components such as FOAF+SSL and adding
RDForms as well as pushbacks, we have proposed a concept of a read-write Web of Data along
with a demonstrator for editing Google calendar entries.

After reviewing the available core components, we have, building on our experience with Tab-
ulator Redux, introduced RDForms. Though, regarding integrity constraints, HTML forms offer
support for information units, they do not convey explicit field semantics. With RDForms, how-
ever, we have proposed a solution to this issue, as one is able to use form-based editing of RDF
graphs over a uniform interface (SPARQL Update). With SPARQL Update one has a fine-granular,
efficient way to update RDF graphs. We hence understand, that the role that HTTP plays in the
RESTful architecture [FT02] of the Web of Documents is filled by SPARQL Update in the Web
of Data. In order to integrate the numerous site-specific APIs, we have introduced write-wrapper,
called pushback.

While working on the demonstrator we have identified certain issues. It is a non-trivial task
to harmonize and integrate the various, currently used authentication mechanisms. For example,
using Google’s authentication together with FOAF+SSL and WAC is subject to further research.
Further, editing data sources may potentially happen in parallel. We need yet to clarify how
to handle concurrency edits in our concept. Equally, to ensure data integrity, we might need to
consider supporting transactions. Eventually, the error handling in case of a write operation has
not yet been explicitly addressed in our concept; this issue should be resolved as the standardisation
of SPARQL Update advances.

Acknowledgements

Our work has partly been supported by the European Commission under Grant No. 217031,
FP7/ICT-2007.1.2, project “Domain Driven Design and Mashup Oriented Development based on
Open Source Java Metaframework for Pragmatic, Reliable and Secure Web Development” (Romu-
lus). The authors thank Jürgen Umbrich, Krystian Samp, and Cosmin Basca for their valuable
input.

18 DERI TR 2009-08-14

References

[ABMP08] B. Adida, M. Birbeck, S. McCarron, and S. Pemberton. RDFa in XHTML: Syntax and
Processing. W3C Recommendation 14 October 2008, W3C Semantic Web Deployment
Working Group, 2008.

[BL] T. Berners-Lee. Linked Data, Design Issues. http://www.w3.org/DesignIssues/
LinkedData.html.

[BLFM05] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. Request for Comments: 3986, January 2005, IETF Network Working
Group, 2005.

[BLHL+08] T. Berners-Lee, J. Hollenbach, Kanghao Lu, J. Presbrey, E. Prud’hommeaux, and
mc schraefel. Tabulator Redux: Browsing and Writing Linked Data. In WWW 2008
Workshop: Linked Data on the Web (LDOW2008), Beijing, China, 2008.

[DHP08] S. Dietzold, S. Hellmann, and M. Peklo. Using JavaScript RDFa Widgets for Mod-
el/View Separation inside Read/Write Websites. In Proceedings of the 4th Workshop
on Scripting for the Semantic Web, Tenerife, Spain, 2008.

[DKP+07] A. Dix, A. Katifori, A. Poggi, T. Catarci, Y. Ioannidis, G. Lepouras, and M. Mora.
From Information to Interaction: in Pursuit of Task-centred Infornation Management.
In Second DELOS Conference on Digital Libraries, Tirrenia, Italy, 2007.

[DS98] F. Dawson and D. Stenerson. Internet Calendaring and Scheduling Core Object Spec-
ification (iCalendar). Request for Comments: 2445, November 1998, IETF Network
Working Group, 1998.

[Dus07] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (Web-
DAV). Request for Comments: 4918, June 2007, IETF Network Working Group, 2007.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Request for Comments: 2616, June
1999, IETF Network Working Group, 1999.

[FHBH+99] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. Request
for Comments: 2617, June 1999, IETF Network Working Group, 1999.

[FT02] R. Fielding and R. Taylor. Principled design of the modern Web architecture. ACM
Trans. Internet Technol., 2(2):115–150, 2002.

[GLA09] N. Gray, T. Linde, and K. Andrews. SKUA retrofitting semantics. In Proceedings of
the 5th Workshop on Scripting for the Semantic Web, Heraklion, Greece, 2009.

[GZC09] F. Giunchiglia, R. Zhang, and B. Crispo. Ontology Driven Community Access Control.
In Proceedings of the First Workshop on Trust and Privacy on the Social and Semantic
Web (SPOT2009), 2009.

DERI TR 2009-08-14 19

[Hau09] M. Hausenblas. Exploiting Linked Data To Build Web Applications. IEEE Internet
Computing, 13(4):68–73, 2009.

[HFPS99] R. Housley, W. Ford, W. Polk, and D. Solo. Internet X.509 Public Key Infrastruc-
ture Certificate and CRL Profile. Request for Comments: 2459, January 1999, IETF
Network Working Group, 1999.

[Ink09] T. Inkster. Inav the Terrible. Buzzword.org.uk Draft 7 February 2009, buz-
zword.org.uk, 2009.

[JW04] I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume One. W3C
Recommendation 15 December 2004, W3C Technical Architecture Group (TAG), 2004.

[KCM04] G. Klyne, J. J. Carroll, and B. McBride. RDF/XML Syntax Specification (Revised).
W3C Recommendation, RDF Core Working Group, 2004.

[Pre09] J. Presbrey. RDF Policy-based URI Access Control for Content Authoring on the
Social Semantic Web. Technical report, Massachusetts Institute of Technology, 2009.

[RR07] L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media, Inc., 2007.

[SHJJ09] H. Story, B. Harbulot, I. Jacobi, and M. Jones. FOAF+TLS: RESTful Authentication
for the Social Web. In Proceedings of the First Workshop on Trust and Privacy on the
Social and Semantic Web, 2009.

[TAPH05] W. Tolone, G. Ahn, T. Pai, and S. Hong. Access control in collaborative systems.
ACM Comput. Surv., 37(1):29–41, 2005.

[Tul97] T. S. Tullis. Screen design, pages 503–531. Elsevier Science, 1997.

[Zha08] B. Zhao. Collaborative Access Control. Telecommunications Software and Multimedia,
2008.

