
The TriQL.P Browser: Filtering Information
using Context-, Content- and Rating-Based

Trust Policies

Christian Bizer1, Richard Cyganiak1, Tobias Gauss1, and Oliver Maresch2

1 Freie Universität Berlin, Germany
chris@bizer.de

richard@cyganiak.de

tobias.gauss@web.de
2 Technische Universität Berlin, Germany

Oliver-Maresch@gmx.de

Abstract. The TriQL.P browser is a general purpose RDF browser that
supports users in exploring RDF datasets containing information from
multiple information sources. Information can be filtered using a wide
range of user-definable trust policies. Policies can be based on infor-
mation context, information content, information or information source
ratings, and on the presence or absence of digital signatures. In order
to help users understand the filtering decisions, the browser can explain
why a piece of information fulfils the selected trust policy.

1 Trust Policies for the Semantic Web

The Semantic Web is an open, dynamic network of independent information
providers all having different views of the world, different levels of knowledge,
and different intentions. Thus, information found on the Semantic Web has to
be seen as claims rather than as facts. Before using these claims, the information
consumer has to evaluate their trustworthiness and determine the subset which
he wants to trust for his specific task.

In everyday life, we use a wide range of trust assessment policies for evaluating
the trustworthiness of information: We might trust Andy on restaurants but not
on computers, trust professors on their research field, believe foreign news only
when it is reported by several independent sources and buy only from sellers on
eBay who have more than 100 positive ratings.

Which policy is chosen depends on the specific task, our subjective prefer-
ences, our past experiences and the trust relevant information available. For tasks
which are economically relevant to the information consumer he might require
a very strict trust policy, involving for example recommendations by people he
knows. For other tasks, a looser policy like ‘Accept all information that has been
asserted by at least two independent information providers, no matter who they
are.’ might be acceptable.

The future Semantic Web is supposed to be a dense mesh of interrelated
information, similar to the information perception situation we face in the offline



world. Thus, we argue, a trust policy framework for the Semantic Web can and
should support a similarly wide range of trust policies as used offline [4].

Every trust policy employs one or more trust assessment methods. These
methods can be classified into three categories:

Rating-Based Methods include rating systems like the one used by eBay
and Web-Of-Trust mechanisms. Most trust architectures proposed for the
Semantic Web so far fall into this category [1][11]. The general problem with
these approaches is that they require explicit and topic-specific trust ratings.
For many application domains, providing such ratings and keeping them up-
to-date puts an unrealistically heavy burden on information consumers.

Context-Based Methods use meta-data about the circumstances in which
information has been claimed, e.g. who said what, when and why. They in-
clude role-based trust methods, using the author’s role or his membership in
a specific group, for trust decisions. Example policies from this category are:
‘Prefer product descriptions published by the manufacturer over descriptions
published by a vendor’ or ‘Distrust everything a vendor says about its com-
petitor.’ Context-based trust mechanisms do not require explicit ratings, but
rely on the availability of background information. Within many Semantic
Web application areas, such background information might be available.

Content-Based Methods do not use meta-data about information, but rules
and axioms together with the information content itself and related infor-
mation about the same topic published by other authors. Example policies
following this approach are: ‘Believe information which has been stated by
at least 5 independent sources.’ or ‘Distrust product prices that are more
than 50% below the average price.’

2 The TriQL.P Browser

The TriQL.P browser is a general purpose RDF browser which shows how Se-
mantic Web content can be filtered using a wide range of trust policies, combining
methods from all three categories described above.

The TriQL.P browser is based on the Piggy Bank extension for the Firefox
browser [10]. Piggy Bank extracts Semantic Web content from Web pages as
users browse the Web. On websites where Semantic Web content is not available,
Piggy Bank can invoke screen-scrapers to re-structure content into Semantic Web
format. The extracted information can be browsed, sorted and searched using a
comfortable user-interface, and saved into a local repository for future reference
and aggregation.

In addition to the functionality provided by Piggy Bank, the TriQL.P browser
gives users the ability to:

– collect provenance meta-data together with information from the Web;
– import information aggregated from multiple sources by a third party into

the local repository using the RDF/XML, TriX [7] and TriG [3] syntaxes;
– load trust policy suites containing sets of policies;



– filter information in the local repository using these policies;
– explain on demand why displayed information fulfils a selected policy.

Figure 1 shows the user interface of the TriQL.P browser. Information items
from the local repository are displayed on the left-hand side. The policy selec-
tion box on the right side allows users to select a policy from the policy suite
currently loaded. After selecting a policy, the left-hand view updates to show
only information matching this policy. There is a ‘Oh, yeah?’-button [2] next to
each piece of information. Pressing this buttons opens a new window with an
explanation why the piece of information fulfils the selected trust policy.

Fig. 1. The TriQL.P user interface. The user selects a trust policy from the right-hand
box. The left-hand view updates to show only matching information. The ‘Oh, yeah?’
buttons open new windows with explanations why a piece of information fulfils the
selected policy.

Figure 2 shows an explanation why information information about Peter
Smith’s email address fulfils the policy ’Trust only information that has been
asserted by at least two different sources.’

Figure 3 shows an explanation why a news article fulfils the policy ’Trust only
information from information providers who have a Tidal Trust score above 0.5’.
The Tidal Trust metric calculates trust scores by determining shortest paths
between individuals in a social network of weighted trust statements and calcu-



Fig. 2. The explanation window. This explanation establishes why information about
Peter Smith’s email address fulfils the policy ‘Asserted by at least two different sources’.

lating its weighted average [11]. The explanation generated for this trust metric
shows the calculation result and contains details about the calculation steps and
the information sources used, allowing an information consumer to comprehend
the calculations at different levels of detail.

The TriQL.P browser is pretty flexible in rendering explanations for different
policies. An explanation for the policy ’Trust only information providers which
are working for at least two projects about a specific topic’ would contain the
list of projects for each information provider. An explanation for the policy
’Trust only information that has been signed by the information providers’ would
contain details about the signature verification process3.

The following sections explain how information collected from different sources
is represented within the TriQL.P browser, how trust policies are expressed and
applied, and how explanations are generated.

3 Representing Information

The TriQL.P browser uses Named Graphs [5] as internal data model. Named
Graphs are a slight extension of the RDF abstract syntax and provide well-
defined semantics for the attachment of provenance information and other meta-
data to RDF graphs.

3 Various policies and corresponding explanations are found at http://www.wiwiss.fu-
berlin.de/suhl/bizer/TriQLP/browser/



Fig. 3. Explanation for the policy ’Trust only information from information providers
who have a Tidal Trust score above 0.5’

Such provenance information can be expressed with the Semantic Web Pub-
lishing Vocabulary (SWP) [6]. SWP also provides terms to indicate whether a
graph is asserted or quoted and to attach digital signatures to it.

Whenever the browser saves information from a webpage into the local repos-
itory, it creates a new named graph for this visit of the page and stores the cur-
rent timestamp, the URL of the page and the authority (website URL) together
with the actual information. The following example shows the browser’s inter-
nal representation of information about Peter Smith collected from the URL
http://www.bizer.de/myFriends.htm, together with the recorded provenance
information. The example uses the TriG syntax [3].

<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> {
ex:PeterSmith a foaf:Person ;

foaf:name "Peter Smith" ;
foaf:mbox <mailto:peter.smith@petersmith.com> .



<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f>
swp:assertedBy

<urn:uuid:8c845860-dce7-11d9-b9c0-00112ff60c7f> ;
swp:authority <http://www.bizer.de> ;
dc:date "2005-06-14T17:18:10+02:00" ;
swp:savedFrom <http://www.bizer.de/myFriends.htm> . }

4 Expressing and Applying Policies

The TriQL.P browser displays information from a virtual trusted graph which
contains a subset of the triples from all named graphs stored in the local reposi-
tory. The browser’s trust evaluation layer uses trust policies to determine which
triples from the untrusted named graphs are promoted into the virtual trusted
graph. The decision is made on a triple-by-triple basis, although many policies
are written to accept or reject entire graphs.

The heart of every trust policy is a TriQL.P query. TriQL.P is a query lan-
guage similar to but predating SPARQL [14]. In addition to basic graph pattern
matching, TriQL.P offers two language constructs which are especially useful
for expressing trust policies: COUNT() for formulating quantity conditions and
METRIC() as an open interface to different rating metrics.

An example TriQL.P query is shown below. When executed against the un-
trusted repository, it selects all triples (bound to the variables ?SUBJ, ?PRED and
?OBJ) which are asserted by at least two authorities.

SELECT ?SUBJ, ?PRED, ?OBJ
WHERE ?GRAPH (?SUBJ, ?PRED, ?OBJ)

(?GRAPH swp:assertedBy ?warrant .
?warrant swp:authority ?authority)

AND COUNT(?authority) >= 2

In order to associate explanation templates with individual graph patterns
and to provide additional metadata about a policy, TriQL.P queries are divided
into single graph patterns and constraints and are recombined using the TPL -
Trust Policy Language. The example below shows a TPL policy built from the
query above:

:Policy6 rdf:type tpl:TrustPolicy ;
tpl:policyName "Asserted by at least two sources" ;
tpl:policyDescription "Trust only information that has

been asserted by at least two different sources." ;
tpl:textExplanation "it was stated by at least two

different sources. The sources are:" ;
tpl:graphPattern [

tpl:pattern "(?GRAPH swp:assertedBy ?warrant .
?warrant swp:authority ?authority)";



tpl:textExplanation "@@?authority@@" ; ] ;
tpl:constraint "COUNT(?authority) >= 2" .

The display layer retrieves information from the trust evaluation layer using
find queries (queries for all triples matching a triple pattern where subject,
predicate and object may be wildcards) against the virtual trusted graph.

Fig. 4. A find query asking for all information about ex:PeterSmith is combined with
a trust policy resulting into a complete TriQL.P query.

To display all information about the resource ex:PeterSmith, the following
steps are performed:

1. The display layer sends a find query and a policy URI to the trust evaluation
layer.

2. The engine combines the find query with the graph patterns and constraints
contained within the policy into a complete TriQL.P query. The variable
?SUBJ is pre-bound to the value ex:PeterSmith.

3. The TriQL.P query is executed against the untrusted repository.
4. RDF triples are created from the variables ?SUBJ, ?PRED and ?OBJ of every

query solution, and sent back to the display layer.

The trust evaluation layer caches the values bound to all other query vari-
ables, like ?warrant and ?authority in the example. They may be used later
to generate explanations.

TriQL.P offers an open interface for rating metrics that cannot be expressed
as graph patterns. The following example shows how the TidalTrust metric is
used as a constraint within a policy:

tpl:constraint "METRIC(tpl:TidalTrustMetric, ?USER, ?author, 0.5)".



Metrics are implemented as Java plug-ins into the TriQL.P query engine.
There are currently four metric plug-ins available: eBay, TidalTrust [11], Apple-
seed [15] and PageRank [13]. The first three metrics require explicit ratings. The
PageRank metric avoids the nessesarity of explicit ratings but allows common
RDF predicates like foaf:knows or rdf:seeAlso to be used as links for ranking.

5 Explaining Filtering Decisions

Each ‘Oh, yeah?’ button in the browser’s user interface corresponds to one RDF
triple of the virtual trusted graph. The following steps are executed to generate
an explanation why a triple fulfils a selected policy:

1. The engine retrieves the previously cached set of variable bindings that was
used to produce the triple.

2. The explanation templates associated with the trust policy are instantiated
using the variable bindings.

3. The resulting text snippets are grouped into a tree which is rendered into
HTML.

In addition to this basic explanation mechanism, METRIC() plug- ins generate
their own explanations about their calculation process and information used
within the process.

6 Conclusions

We have argued that trust frameworks for the Semantic Web should not rely
solely on explicit ratings but also facilitate information context and information
content for trust assessments. We have shown a flexible way to express trust
policies and to explain filtering decisions based on these policies, and we have
described how to integrate our policy framework into a general-purpose Semantic
Web browser.

Our approach of expressing policies as query templates instead of expressing
them as rules [8] might suit users familiar with query languages like SPARQL.
The information provenance explanations generated by the browser are similar to
the provenance traces used within TRELLIS [9]. Compared with TRELLIS, our
explanations are more flexible as they don’t assume a single provenance ontology.
The explanations generated by Inference Web [12] are complementary to our
work. Inference Web focuses on explaining distributed reasoning paths, while we
are focusing on explaining information provenance, background knowledge used
in the assessments and metric calculations.

We hope that our prototype facilitates further thinking about pragmatic
ways to incorporate trust policy frameworks into Semantic Web applications, as
trust is an essential topic for the Semantic Web but is often ignored by current
applications.

The TriQL.P browser is available under BSD license. More information about
the browser, example RDF datasets and example policy suites are found at:
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriQLP/browser/



References

1. R. Agrawal, P. Domingos, and M. Richardson. Trust Management for the Semantic
Web. In 2nd International Semantic Web Conference, 2003.

2. T. Berners-Lee. Cleaning up the user interface, section - the ”oh, yeah?”-button,
1997. http://www.w3.org/DesignIssues/UI.html.

3. C. Bizer. The trig syntax. http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/.
4. C. Bizer and R. Oldakowski. Using context- and content-based trust policies on

the semantic web. In 13th World Wide Web Conference (Poster), 2004.
5. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs website.

http://www.w3.org/2004/03/trix/.
6. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and

trust. In 14th International World Wide Web Conference, 2005.
7. J. Carroll and P. Stickler. TriX: RDF Triples in XML. In Proceedings of Extreme

Markup Languages, 2004.
8. T. Gianluca. Semantic web languages for policy representation and reasoning: A

comparison of kaos, rei, and ponder. In 2nd International Semantic Web Confer-
ence, 2003.

9. Y. Gil and V. Ratnakar. Trusting information sources one citizen at a time. In 1st
International Semantic Web Concerence, 2002.

10. D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank: Experience the semantic web
inside your web browser. Submitted to the International Semantic Web Conference
2005.

11. Jennifer Golbeck. Computing and Applying Trust in Web-based Social Networks.
PhD thesis, 2005. http://trust.mindswap.org/papers/GolbeckDissertation.pdf.

12. D. L. McGuinness and P. P. da Silva. Infrastructure for web explanations. In 2nd
International Semantic Web Conference, 2003.

13. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, 1998.

14. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/, 2005.

15. C.-N. Ziegler and G. Lausen. Spreading activation models for trust propagation.
In IEEE International Conference on e-Technology, e-Commerce, and e-Service,
2004.


